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Abstract

Thyroid cancer (TC) is a common and curable endocrine tumor occurring in the head and neck 
characterized by a low mortality rate compared to other malignancies. In this study, the immune mi-
croenvironment of TC was investigated to identify biomarkers. The mRNA and clinical data available 
in this study were accessed from The Cancer Genome Atlas-Thyroid Cancer (TCGA-THCA) dataset. 
Differences in immune infiltration levels of TC and normal samples were assessed by CIBERSORT. 
Thyroid cancer samples were classified into high- and low-abundance groups according to the median 
abundance of immune cell infiltration, and CD8+ T cells were notably correlated with the survival status. 
Differential expression analysis was conducted on CD8+ T cells to obtain immune-related differentially 
expressed genes (DEGs). Subsequently, a prognostic risk model was established through Cox regression 
analysis. According to the median risk score, samples in the training set and validation set were assigned 
to high- and low-risk groups. The survival and ROC curves demonstrated that the model possesses fa-
vorable prognostic prediction ability. Furthermore, the results of gene set enrichment analysis (GSEA) 
indicated differences between the high- and low-risk groups in terms of ECM receptor interaction and 
transforming growth factor β (TGF-β) signaling pathways. The tumor microenvironment of TC samples 
was evaluated by ESTIMATE, which showed that stromal scores were higher in the high-risk group. 
Finally, simple-sample GSEA (ssGSEA) was performed on TC samples. The results indicated a higher 
infiltration level of NK cells in the low-risk group, as well as a lower level in the high-risk group. In terms 
of immune function-related gene sets, genes related to APC co-inhibition, cytolytic activity, HLA and  
T cell co-inhibition were observed to present higher expression levels in the low-risk group. In general, 
this study built a 6-gene prognostic risk assessment model based on CD8+ T cells through bioinformatics 
analysis, which is expected to be a reference for clinicians to judge the prognosis of TC patients.

Key words: thyroid cancer, CD8+ T cells, tumor microenvironment, prognostic assessment, immune 
infiltration.
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Introduction
Thyroid cancer (TC), the most frequent endocrine ma-

lignancy in the head and neck, arises from the follicular or 
parafollicular epithelial cells. With 586,000 cases world-
wide according to the World Health Organization (WHO), 
TC incidence ranked ninth in 2020 [1]. At present, the 
therapeutic approach to TC is mainly surgical treatment, 
complemented by other treatment methods. Thyroid cancer 
is prone to metastasize, and incurable as demonstrated by 
current studies. It has a high rate of early detection and 
a much higher five-year survival rate than other tumors. 
However, the prognosis of different types of TCs varies, 
and the prognosis of recurrent and metastatic TCs and un-
differentiated TCs is poor [2, 3]. Therefore, it is particularly 
important to understand the factors influencing the prog-
nosis of TC patients.

T cell infiltration is an essential factor in modulating 
tumor progression, which determines the clinical response 
to immunotherapy [4]. CD8+ T cells are important for in-
tracellular protective immunity against tumors. It was re-
ported that dysfunction of CD8+ T cells could influence  
the efficacy of immunotherapy [4]. It has been confirmed 
that the number of resident CD103+CD8+ T cells or the 
density of tumor infiltrating CD8+ T cells in colorectal tis-
sue can be a critical prognostic indicator of colorectal can-
cer [5]. Yang et al. [6] investigated the immune genes of 
colon cancer and found that related genes in T cells are cor-
related with prognosis of colon cancer. Lin et al. [7] identi-
fied a potential prognostic biomarker of clear cell renal cell 
carcinoma based on CD8+ T cell infiltration. Oshi et al. [8] 
standardized scores for CD8+ T cell abundance, which can 
be used to predict overall survival (OS) of patients suffer-
ing from triple negative breast cancer. Shigeta et al. [9] 
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reported that CXCR3+CD8+ T cell infiltration is increased 
by upgrading CXCL10 expression in hepatocellular carci-
noma, thus achieving inhibition of tumor growth and high-
er survival via regorafenib/anti-PD1 combination therapy. 
Yang et al. [10] discovered that the relationship between 
high CD8+ T infiltration is correlated with favorable sur-
vival of prostate cancer patients after radical prostatecto-
my. Therefore, it contributes to prognostic assessment and 
development of an immunotherapy molecular biomarker 
for TC patients by developing a CD8+ T cell infiltration- 
related biomarker and prognostic model.

At present, there are few studies on the prognosis of 
TC based on CD8+ T cell-related genes. Here, mRNA data 
of TC from The Cancer Genome Atlas (TCGA) database 
were analyzed by bioinformatics methods. We identified 
a significant association between CD8+ T cells and sur-
vival of TC patients. Subsequently, a TC prognostic risk 
assessment model based on immune-related genes in CD8+ 
T cells was constructed according to the screened DEGs. 
Next, we verified the model and evaluated immune infil-
tration to provide a basis for the prognostic gene screening 
and prognosis determination.

Material and methods

Data download and processing

mRNA expression information in TCGA-THCA was 
accessed from the TCGA database (https://portal.gdc.can-
cer.gov/) in FRKM format and count format (normal:58 
tumor:510) as well as clinical data.

Assessment of immune cell abundance  
and its correlation with survival

CIBERSORT [11] was employed to analyze the mRNA 
expression data (FPKM format) of TC samples in the  
TCGA-THCA dataset, and the data were iterated 1000 times 
to obtain the composition proportion of 22 immune cells in 
all samples. Samples with a p‑value < 0.05 were selected 
for subsequent analyses. The vioplot package (CRAN-Pack-
age vioplot (r-project.org)) was utilized to assess the differ-
ence in cell abundance between normal and tumor samples.  
The samples were grouped according to the median cell 
abundance. The survival package was applied for survival 
analysis, which was performed by combining immune cells 
with altered infiltration levels in TC. The results showed 
that CD8+ T cells could well predict the survival of patients.

Screening of differentially expressed genes 
related to CD8+ T cell abundance 

Differential expression analysis (|logFC| > 1.5, p
adj

 < 0.05) 
of mRNA expression data (count format) was conducted on 
CD8+ T cells in high- and low-abundance groups via the 
edge package [12]. After the DEGs were obtained, the clus-
terprofiler package [13] was used for gene ontology (GO) 

and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
enrichment analyses of DEGs (q-value < 0.05). Finally,  
the enrichplot package (CRAN-Package shadowtext (r-proj-
ect.org)) was employed to visualize enrichment results.

Screening of prognosis-related feature genes  
in CD8+ T cells and construction of the prognostic 
model

Thyroid cancer samples were randomized to the training 
set (counts: 352) and validation set (counts: 150) at a ratio 
of 7 : 3. The samples with less than 30-day OS were deleted 
from the training set. Combined with the OS of patients, 
univariate Cox regression analysis (p < 0.05) was performed 
on the CD8+ T cell-related DEGs in the training set using 
the survival package, and survival-related genes were se-
lected. To avoid over-fitting, the glmnet package [14] was 
applied to conduct Lasso Cox regression analysis on the 
genes selected above. The cross-validation method was used 
to remove genes with a strong correlation using the penal-
ty parameter lambda, thus reducing the model complexity. 
Finally, the survival package was utilized to conduct mul-
tivariate Cox regression analysis on the genes screened by 
Lasso. The risk assessment model was constructed based 
on genes acquired hereinbefore. Based on the expression 
of each gene and regression coefficient, the risk score of 
the samples in the training set was formulated as follows:

RiskScore = exp
i * b

iΣ
n

i = 1

n is the number of feature immune-related genes in 
CD8+ T; exp

i
 is the expression value of each prognostic 

feature gene; and β
i
 refers to the corresponding multivari-

ate Cox regression coefficient.
Finally, we assigned TC samples in the training set and 

validation set to high- and low-risk groups with the median 
risk score as the cut-off value. Significant differences of 
the Kaplan-Meier (KM) curve between two groups were 
analyzed using the survival package. The ‘timeROC’ pack-
age [13] was applied to draw the receiver operating char-
acteristic (ROC) curve. The AUC values of 1-, 3-, 5-year 
OS were calculated and then verified in the training set 
and validation set.

Gene set enrichment analysis
To identify the key signaling pathways that affected 

OS differences between samples in two risk groups, gene 
set enrichment analysis (GSEA) software [15] (http://
www.gsea-msigdb.org/gsea/index.jsp) (FDR < 0.05) was 
employed to screen KEGG pathways with different activa-
tion levels in the two risk groups.

Immune infiltration assessment

Stromal, immune, and ESTIMATE scores of TC sam-
ples in the training set were assessed using the estimate 
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TCGA-THCA samples. 163 samples were screened for 
subsequent analyses with q-value < 0.5 as the threshold  
(Fig. 1A). The results of differential expression analysis 
showed that naïve B cells, follicular helper T cells, CD8  
T cells, M0 macrophages, M1 macrophages and M2 mac-
rophages had significant differences and high abundance 
(Fig. 1B, Table S1). Combined with clinical information,  
we plotted the survival curves of patients in high- and 
low-abundance groups of immune cells. The results indi-
cated that patients with TC in the high abundance CD8+  
T cell group presented a higher survival rate. In contrast, 
the abundance of other immune cells was not significantly 
associated with OS (Fig. 1C-H).

package [16]. Single-sample GSEA (ssGSEA) analysis 
was performed on tumor samples in the two risk groups 
using the Gene Set Variation Analysis (GSVA) package 
[17], and the Wilcoxon test was applied to verify differ-
ences between two groups.

Results
Immune cell abundance and its correlation  
with survival

CIBERSORT was applied to evaluate the rel-
ative abundance of 22 kinds of immune cells from  

Fig. 1. Correlation analysis of immune cell abundance and overall survival (OS). A) Abundance ratios of various immune 
cells in thyroid cancer (TC) samples. B) Differences in the abundance of immune cells between normal (blue) and tumor 
tissue samples (red) 
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Fig. 1. Cont. The survival curves of patients in high- and low-abundance groups: C) naïve B cells, D) CD8 T cells,  
E) Follicular helper T cells, F) M0 macrophages, G) M1 macrophages, H) M2 macrophages

1.0

0.8

0.6

0.4

0.2

0

1.0

0.8

0.6

0.4

0.2

0

Su
rv

iv
al

 r
at

e

Su
rv

iv
al

 r
at

e

B cells naive (p = 0.266) T cells CD8 (p = 0.008)

0	 5	 10	 15 0	 5	 10	 15
 Time (year)  Time (year)

C D

1.0

0.8

0.6

0.4

0.2

0

1.0

0.8

0.6

0.4

0.2

0

Su
rv

iv
al

 r
at

e

Su
rv

iv
al

 r
at

e
T cells follicular helper (p = 0.834) M0 macrophages (p = 0.058)

0	 5	 10	 15 0	 5	 10	 15
 Time (year)  Time (year)

E F

1.0

0.8

0.6

0.4

0.2

0

1.0

0.8

0.6

0.4

0.2

0

Su
rv

iv
al

 r
at

e

Su
rv

iv
al

 r
at

e

M1 macrophages (p = 0.227) M2 macrophages (p = 0.219)

0	 5	 10	 15 0	 5	 10	 15
 Time (year)  Time (year)

G H



Central European Journal of Immunology 2022; 47(3)

Yaojie Hu et al.

238

Differentially expressed genes affect CD8+ T cell 
abundance

Differential expression analysis was conducted on 
CD8+ T cells in the two abundance groups, and 397 dif-
ferential genes were obtained, including 144 up-regu-
lated genes and 253 down-regulated genes (Fig. 2). GO 
and KEGG enrichment analyses were performed on im-
mune-related DEGs. The results of GO analysis showed 
that most of the DEGs were gathered in the molecular ac-
tivities, such as receptor ligand activity, G protein-coupled 
receptor binding, cytokine activity and chemokine activity 

(Fig. 3A). The results of KEGG analysis demonstrated that 
most of the DEGs were enriched in neuroactive ligand-re-
ceptor interaction, cytokine-cytokine receptor interaction, 
chemokine signaling pathway and interleukin (IL)-17 sig-
naling pathway (Fig. 3B). Differential expression of these 
immune genes may contribute to the remarkable difference 
in prognosis of TC patients.

Constructing a 6-gene prognostic model  
on the basis of CD8+ T cells

Univariate Cox analysis was carried out in combina-
tion with immune-related DEGs, and 61 immune-related 
genes were screened (Table S2). Lasso regression anal-
ysis was performed to assess these 61 genes to prevent 
overfitting of the model, and 11 important feature genes 
were screened (Fig. 4A, B). A multivariate Cox regression 
model was constructed for the 11 genes, and 6 prognostic 
feature genes (MYL3, CILP, PCOLCE2, HMGCS2, PPBP, 
GCGR) were screened (Fig. 4C). The risk model was ob-
tained. Risk score = 0.9703 × MYL3 + 0.5322 × CILP 
+ 0.7225 × PCOLCE2 + 0.6878 × HMGCS2 + 0.7626 × 
PPBP + 0.7528 × GCGR.

Assessment of predictive ability of the 6-gene 
prognostic model

The risk value of each TC sample in the training set was 
calculated based on the 6-gene prognostic model. Patients 
were assigned to high-risk and low-risk groups (Fig. 5A). 
Then, the survival distribution figure of TC patients and the 
KM curves of the two risk groups were drawn (Fig. 5B, C), 
and the survival analysis of the two groups in the validation 
set was conducted (Fig. 5D). The results revealed that the 
OS of samples in the low-risk group was notably longer 
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Fig. 3. Enrichment analysis of differentially expressed genes (DEGs) in CD8+ T cells. A) Bubble chart of DEGs GO 
enrichment analysis. B) The results of KEGG enrichment analysis of DEGs. Nodes represent the terms of enrichment, 
and the larger the nodes are, the more genes are enriched; the color of nodes tends to red, the smaller the p value is.
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than that in the other group. Subsequently, we analyzed 
the expression patterns of 6 feature genes, and it could be 
seen that the expression of feature genes increased with 
the increase of risk score (Fig. 5E). The timeROC package 
was employed to draw the time-ROC curve. The results 
showed that 1-, 3-, and 5- year survival rates of patients 
were predicted by the prognostic model in the training set, 
with 0.9, 0.97 and 0.88 AUC values respectively (Fig. 6A). 
The prognostic model in the validation set was used to fur-
ther verify the 1-, 3- and 5-year survival of patients, with 
0.98, 0.79 and 0.79 AUC values respectively (Fig. 6B).  
It was confirmed that the risk score obtained from the 
6-gene risk model based on the training set has a certain 
predictive ability for the prognosis of TC patients.

Gene set enrichment analysis results

GESA software was applied to analyze the key signal-
ing pathways that affected OS differences in TC samples. 
Differences in ECM receptor interaction, the hedgehog 

signaling pathway and the transforming growth factor β 
(TGF-β) signaling pathway were compared between the 
two risk groups (Fig. 7). These pathways were all related 
to immunity, and differences in immune-related pathways 
may be the reason for the high and low risk of TC patients.

Immune infiltration assessment

The stromal and immune cells of TC samples in the 
TCGA-THCA dataset were scored using the ESTIMATE 
package, with stromal scores ranging from –1677.8078 
to 1591.0739, immune scores ranging from –1285.1845 
to 3204.7238, and ESTIMATE scores ranging from 
–2418.0121 to 4167.0835. Differences in the stromal 
score, immune score, and total score in the two groups 
were analyzed. It was proved that the stromal score in the 
high-risk group was higher than that in the other group, 
while the immune and ESTIMATE scores were not con-
siderably different between the two groups (Fig. 8A).  
The enrichment results of ssGSEA showed that the NK cell 
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Fig. 5. Performance assessment of 6-gene prognostic risk model. A) Distribution of risk scores of thyroid cancer (TC) 
patients in the high-/low-risk group in the training set, with green representing low risk and red representing high risk.  
B) Survival distribution map of TC patients in the training set by the risk score, with green representing surviving pa-
tients and red representing dead patients. C) Kaplan-Meier (KM) survival curve of patients in the two risk groups in 
training set. D) KM survival curve of patients in the two risk groups in validation set, with blue representing low risk, 
red representing high risk 
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Fig. 5. Cont. E) Heat map of survival of patients in the high- and low-risk groups
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infiltration level was lower in the high-risk group. In terms 
of the function of immune-related genes, APC co-inhibi-
tion, cytolytic activity, HLA and T cell co-inhibition were 
activated in the low-risk group (Fig. 8B, C).

Discussion
Due to the increased recurrence rate of TC, the in-

curable rate and mortality rate of patients have increased 
[18]. Therefore, the accuracy of prognosis prediction is 
particularly important. Cancer immunotherapy utilizes 
the immune mechanism of the human body through ac-
tive or passive methods to enhance immune function, thus 

achieving the purpose of killing tumor cells. It is generally 
accepted that peripheral lymphocytes at the edge of tumors 
and lymphocytes in direct contact with tumor cells are of 
great significance for the prognosis of patients with tumors 
[4]. The tumor immune microenvironment and infiltrating 
CD8+ T lymphocytes can improve the therapeutic effect 
of multiple types of tumors. The advantage of immuno-
therapy is that memory CD8+ T cells can be generated to 
provide lasting protection for the body, thus preventing 
metastasis and recurrence [19].

In this study, the composition of TC immune cells was 
analyzed to select immune cells that are markedly associat-
ed with the prognosis of patients. Six feature genes (MYL3, 
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A

A

C

B

Fig. 7. Gene set enrichment analysis (GSEA) of high- 
and low-risk groups. Enrichment in different pathways in 
high- and low-risk groups: A) ECM receptor interaction;  
B) TGF-β signaling pathway; C) hedgehog signaling path-
way

CILP, PCOLCE2, HMGCS2, PPBP, GCGR) that were 
remarkedly correlated with the OS of TC patients were 
screened by analyzing abnormal expression genes in CD8+ 
T cells, and the 6-gene prognostic risk assessment model 
was established. The prognostic risk of TC patients was 
predicted in terms of 6-gene expression. HMGCS2 is a mi-
tochondrial enzyme involved in the ketogenic pathway. 
Hao et al. [20] explored HMGCS2 as a biomarker closely 
related to tumor lipid metabolism and immune response 
through immune microenvironment analysis of pan-can-
cer. HMGCS2 is involved in the occurrence, progression 
and survival of many cancers. For example, the expres-
sion level of HMGCS2 in colon cancer tissue is negatively 
correlated with angiogenesis [21]. The protein encoded by 

PPBP is a platelet-derived growth factor. It was demon-
strated that the expression of PPBP can function as a prog-
nostic biomarker of gastric cancer, colorectal cancer and 
non-functional pituitary adenoma [22-24]. GCGR is a glu-
cagon receptor, which can be used as a prognostic marker 
of TC [25], and silencing of GCGR with small interfering 
RNA attenuates the impact of glucagon on colon cancer 
[26]. PCOLCE2 encodes a kind of collagen protein, which 
has been confirmed to function as a cancer-promoting fac-
tor in ovarian cancer [27]. MYL3 encodes the myosin light 
chain and is associated with cardiac diseases. Cartilage in-
termediate layer protein (CILP), which encodes for carti-
lage meso-protein, is associated with joint diseases. How-
ever, the relationship between these two genes and tumors 
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Fig. 8. Thyroid cancer (TC) immune infiltration assessment. Differential analysis in high- and low-risk groups: A) stromal 
score, immune score and total score, B) immune cell score, C) immune function. Blue represents the low-risk group and 
red represents the high-risk group
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has not been reported. Comprehensive analysis indicated 
that the immune-related genes in CD8+ T cells screened in 
this study were not only related to the prognosis of TC, but 
also could be utilized as an underlying therapeutic target.

Gene set enrichment analysis results confirmed that 
ECM receptor interaction, the TGF-β signaling pathway 
and the HEDGEHOG signaling pathway were prominently 
up-regulated in the high-risk group. ECM is a complex gi-
ant network constituted by various cells, including numer-
ous immune cells. Changes in ECM lead to corresponding 
changes in clinical manifestations of patients. For instance, 
in tumor cells of non-small cell lung carcinoma patients, 
high levels of T cells and high expression levels of fibro-
blast activation protein (FAP) on cancer-associated fibro-
blasts (CAF) are associated with better prognosis [28].  
The TGF-β signaling pathway can regulate the production 
and effector functions of various kinds of immune cells, 
which is the core of immunosuppression in the tumor mi-
croenvironment [29-31]. Studies also indicate that increased 
TGF-β level and increased CAF expression level lead to 
a subtype with adverse prognosis of patients with colorectal 
cancer, and the use of TGF-β signaling inhibitors can repress 
tumor progression [32]. The hedgehog signaling pathway 
modulates several key developmental processes in verte-
brates, including cell proliferation, embryogenesis, and cell 
fate decision [33, 34]. However, abnormal activation of the 
hedgehog pathway can cause the occurrence, progression 
and metastasis of various cancers [35, 36]. Hedgehog polar-
ization in TAM suppresses anti-tumor immunity via CD8+ T 
cell infiltration in the tumor microenvironment [37]. There-
fore, these three pathways may be the key signaling path-
ways affecting the differences in prognosis of TC patients.

As immune cell infiltration is considered important for 
the tumor microenvironment, we scored the immune cells 
and stromal cells in TC samples. The differential expres-
sion analysis indicated that the stromal cell score was con-
siderably higher in the high-risk group, while the immune 
score and ESTIMATE score did not differ notably between 
the two groups. Immune infiltration levels were assessed 
in each TC sample using ssGSEA and higher NK cell in-
filtration levels were found in the low-risk group compared 
to the other group. NK is a cytotoxic effector of the innate 
immune system, which can identify and eradicate tumor 
cells without prior sensitization [38]. The higher the level 
of NK cell immune infiltration, the longer is the survival 
time of patients [39]. We investigated APC co-inhibition; 
cytolytic activity, HLA and T cell co-inhibition were ac-
tivated in the low-risk group. It was found that cytolytic 
activity in the tumor is closely correlated with CD8+ T cell 
immune infiltration [40]. Hurkmans et al. [41] demon-
strated that the combination of PD-L1 expression, CD8+ 
T cell infiltration, TML, and class I HLA can be used as 
a predictive biomarker of the anti-PD-1 immunotherapy 
response of non-small cell lung cancer (NSCLC) patients. 
Analysis of T cell co-inhibition in the tumor microenviron-

ment by Baitsch et al. [42] showed that compared to blood, 
coinhibitory molecules LAG-3, TIM-3 and CTLA-4 are 
upregulated in total CD8+ T cells in the tumor infiltrated 
lymph node. Finally, we screened CD8+ T cell associated 
gene signatures and examined the prognostic performance 
and the potentially involved pathways of the signatures.

There are still limitations of this study. First, this study 
is a retrospective experiment based on public database 
data, and the prediction model is based on the training data 
set. We did not use clinical samples for external verifica-
tion. Second, we mined 6 feature genes associated with 
CD8+ T cells but did not design experiments to investi-
gate the mechanism of these genes participating in the  
T cell immune response. Finally, the samples used are 
from diverse thyroid cancer types in which follicular thy-
roid cancer samples account for the majority; therefore the 
model is not suitable for one specific type of thyroid can-
cer. Considering the situation above, we plan to construct 
our thyroid cancer sample library and construct prognostic 
models for specific thyroid cancer subtypes.

To sum up, in this study based on screening 6 immune-re-
lated feature genes in CD8+ T cells and prognosis of TC 
a risk assessment model was established and the risk scores 
generated by the prognostic model can act as an independent 
prognostic factor. Six feature genes may be the potential 
targets for treatment of TC, which can provide a reference 
for clinicians to determine the prognosis of TC patients and 
design personalized diagnosis and treatment plans.

Supplementary tables are available on journal’s website.

The authors declare no conflict of interest.
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